Some Epoxy-acetylene Cyclisations

By Michael Mellor, Albert Santos, Edward G. Scovell, and James K. Sutherland* (Chemistry Department, The University, Manchester M13 9PL)

Summary Two epoxy-acetylenes have been cyclised, one containing a terminal acetylene to a decalin derivative, the other to an hydrindane derivative.

We have shown ${ }^{1}$ that reaction of an $\alpha \beta$-epoxy ketone of type (1) with a Lewis acid can lead to 9 -methyldecalin derivatives by cyclisation involving participation of sidechains containing mono- or di-substituted olefins or aromatic rings. We now show that acetylenic bonds can also participate in cyclisations of these types. Cyclisation of (1) with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ or TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave high yields $(>90 \%)$ of (3) $\left[\tau\left(\mathrm{CDCl}_{3}\right) 9 \cdot 05(3 \mathrm{H}, \mathrm{s})\right.$ and $4 \cdot 35(1 \mathrm{H}, \mathrm{s}) ; \nu_{\max }$ $\left(\mathrm{CHCl}_{3}\right) \quad 3480$ and $1715 \mathrm{~cm}^{-1}$]. The structure was established by reduction of (3) to the diol $\left(\mathrm{NaBH}_{4}\right)$ followed by periodate oxidation to the keto-aldehyde (4) $\tau \tau\left(\mathrm{CDCl}_{3}\right)$ $8.9(3 \mathrm{H}, \mathrm{s}), 4.4(1 \mathrm{H}, \mathrm{t}, J 2 \mathrm{~Hz})$, and $0.48(1 \mathrm{H}, \mathrm{t}, J 2 \mathrm{~Hz})$; $\left.v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1720 \mathrm{~cm}^{-1}\right]$ which on treatment with $\mathrm{Na}_{2} \mathrm{CO}_{3}-$ MeOH gave (5) [$\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1680 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }}(\mathrm{EtOH}) 234$ $\mathrm{nm}(\epsilon \mathbf{1 5}, 000)]$. The electronically unbiased acetylene (2) cyclised to the hydrindane derivative \dagger (6) (94%) [$\nu_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) 3490$ and $1715 \mathrm{~cm}^{-1} ; \tau\left(\mathrm{CDCl}_{3}\right) 8.75(3 \mathrm{H}, \mathrm{s})$ and $7.81(3 \mathrm{H}, \mathrm{t}, J 1.5 \mathrm{~Hz})]$ with $\mathrm{SnCl}_{4}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the structure of which was established by degradation. Ozonolysis of (6) gave (7) $\left[v_{\max }\left(\mathrm{CHCl}_{3}\right) 3490\right.$ and $\left.1750 \mathrm{~cm}^{-1} ; \tau 8.96(3 \mathrm{H}, \mathrm{s})\right]$ demonstrating that the ring formed by cyclisation was fivemembered. This was confirmed and the orientation of the side-chain indicated by reduction of (7) to the corresponding

(1) $\mathrm{R}=\left[\mathrm{CH}_{2}\right]_{2} \mathrm{C} \equiv \mathrm{CH}$
(2) $\mathrm{R}=\left[\mathrm{CH}_{2}\right]_{2} \mathrm{C} \equiv \mathrm{CMe}$

(4)

(5)

(3)

(6)

(7)

(8)
\dagger Professor J. E. McMurry, University of California, Santa Cruz has achieved a closely related cyclisation: personal communication.
diols $\left(\mathrm{NaBH}_{4}\right)$ followed by HIO_{4} oxidation to (8) [$\mathrm{v}_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) 1750 \mathrm{~cm}^{-1} ; \tau\left(\mathrm{CDCl}_{3}\right) 8.8(3 \mathrm{H}, \mathrm{s}), 7.8(3 \mathrm{H}, \mathrm{t}, J$ 1.8 Hz), and $0.3(1 \mathrm{H}, \mathrm{t}, J 1.5 \mathrm{~Hz})]$. Attempts to apply Johnson's procedure ${ }^{2}$ of trapping the vinyl cations by vinylidene carbonate were unsuccessful in the case of (1) and we have no evidence for the formation of hydrindan products; (3) is most likely formed by a 6-Endo-Dig cyclisation rather than 5 -Exo-Dig followed by rearrangement. When (1) was cyclised by $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ in pentane spectral evidence showed that formation of the vinyl fluoride and ring contraction had occurred. A combination of m.s.g.l.c. and spectral evidence suggested that $\mathrm{BF}_{3} . \mathrm{OEt}_{2}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cyclisation of (2) was forming (6), the corresponding vinyl fluoride, and the ring-expanded vinyl fluoride.

Ring junction stereochemistry of the cyclisation products
was assigned because of the presence of an intramolecularly hydrogen bonded hydroxyl group and E-stereochemistry for the double bond in (6) followed from long-range coupling of the methyl group with the ring methylene.
These results establish that, as in carbonium ion-acetylene cyclisations, ${ }^{2-4}$ the 5 -Exo-Dig cyclisation ${ }^{5}$ is favoured over 6-Endo-Dig when the acetylene is electronically unbiased. However, when favoured electronically the 6 -Endo-Dig cyclisation is observed. The difference in behaviour from the corresponding olefins probably arises from the 120° approach vector which has been postulated in the case of attack on the acetylenic bond. ${ }^{6}$

We thank the S.R.C. for financial support.
(Received, 9th March 1978; Com. 253.)
${ }^{1}$ E. Huq, M. Mellor, E. G. Scovell, and J. K. Sutherland, J.C.S. Chem. Comm., preceding communication.
${ }^{2}$ W. S. Johnson, M. B. Gravestock, and B. E. McCarry, J. Amer. Chem. Soc., 1971, 93, 4332.
${ }^{3}$ P. E. Peterson and R. J. Kamat, J. Amer. Chem. Soc., 1969, 91, 4521.
${ }^{4}$ P. T. Lansbury and G. E. DuBois, Chem. Comm., 1971, 1107.
${ }^{5}$ J. E. Baldwin, J.C.S. Chem. Comm., 1976, 734.
${ }^{6}$ G. Wegner, Polymer Letters, 1971, 9, 133; R. H. Baughman, J. Appl. Phys., 1972, 43, 4362.

